精品女同一区二区三区不卡-日本不卡一区二区在线看-性色av一区二区三区人妻-国产精品久久久久一级app

銷售熱線

19126518388
  • 技術(shù)文章ARTICLE

    您當(dāng)前的位置:首頁 > 技術(shù)文章 > 3D細(xì)胞培養(yǎng)的現(xiàn)狀及未來

    3D細(xì)胞培養(yǎng)的現(xiàn)狀及未來

    發(fā)布時間: 2022-02-21  點擊次數(shù): 2495次
    2D細(xì)胞培養(yǎng)作為一項生命科學(xué)領(lǐng)域中長期使用的技術(shù),使人類能夠在體外研究細(xì)胞的生理和病理。然而隨著對細(xì)胞微環(huán)境概念的逐漸了解,科學(xué)家們發(fā)現(xiàn)2D培養(yǎng)細(xì)胞的生理狀態(tài)和活性與體內(nèi)細(xì)胞并不*一致,其結(jié)果常常與動物實驗和臨床實驗結(jié)果相矛盾。因此,在過去的十年中,科學(xué)家致力于開發(fā)各種3D細(xì)胞培養(yǎng)技術(shù),以為細(xì)胞提供更類似于體內(nèi)環(huán)境的培養(yǎng)環(huán)境。研究人員逐漸意識到,若想在體外實現(xiàn)細(xì)胞的形態(tài)、結(jié)構(gòu)和生理功能,3D細(xì)胞培養(yǎng)需要能夠模擬包括細(xì)胞與細(xì)胞,細(xì)胞與細(xì)胞外基質(zhì)及細(xì)胞與器官的相互作用在內(nèi)的體內(nèi)環(huán)境的關(guān)鍵特征。那么3D細(xì)胞培養(yǎng)技術(shù)如何能像2D細(xì)胞培養(yǎng)技術(shù)一樣推而廣之呢?

     


    去年,浙江大學(xué)醫(yī)學(xué)院孫苗醫(yī)師劉安醫(yī)師為共同第一作者、浙大賀永教授王慧明教授為共同通訊的綜述“3D cell culture—can it be as popular as 2D cell culture?”發(fā)表在《Advanced Nanobiomed Research》雜志。文章概述了以水凝膠系統(tǒng)為核心的生物材料系統(tǒng)、以生物打印為主要手段的生物制造技術(shù)及由微流控芯片和生物反應(yīng)器構(gòu)成的培養(yǎng)設(shè)備系統(tǒng)三個方面相關(guān)的3D細(xì)胞培養(yǎng)系統(tǒng)的開發(fā)。探討了3D細(xì)胞培養(yǎng)的現(xiàn)狀及未來,提出3D細(xì)胞培養(yǎng)在將來與2D培養(yǎng)一樣普及的關(guān)鍵可能在于其制造、培養(yǎng)操作及檢測的標(biāo)準(zhǔn)化,這其中涵蓋了多種技術(shù)難題。

    作者首先從培養(yǎng)基質(zhì)、細(xì)胞極性、生物因子擴(kuò)散、微環(huán)境四方面對2D,2.5D與3D細(xì)胞培養(yǎng)的差異進(jìn)行了比較,并作出了示意圖。(表1)

    表1 2D,2.5D,3D細(xì)胞培養(yǎng)對比
    圖片

    為了真正實現(xiàn)體內(nèi)細(xì)胞的形狀和功能,科學(xué)家引入了一種基于水凝膠的ECM系統(tǒng)。水凝膠中存在的3D網(wǎng)絡(luò)結(jié)構(gòu)使液體可以在其中擴(kuò)散或滲透,從而為細(xì)胞提供了良好的生長環(huán)境。這種基于水凝膠的培養(yǎng)底物系統(tǒng)是整個3D細(xì)胞培養(yǎng)系統(tǒng)的核心。作者將3D細(xì)胞培養(yǎng)的所需的技術(shù)支持以塔表現(xiàn)出來。(圖1)

    圖片
    圖1 三維細(xì)胞培養(yǎng)示意圖。當(dāng)我們把三維細(xì)胞培養(yǎng)看作是一座建筑塔時,生物材料的ECM模擬、微結(jié)構(gòu)的制造和培養(yǎng)體系構(gòu)成了整個塔的支柱,支撐著第一級的屋頂——三維細(xì)胞培養(yǎng)的應(yīng)用。隨著3D細(xì)胞培養(yǎng)技術(shù)的發(fā)展,塔的第二層展示了我們所面臨的挑戰(zhàn)。只有攻破這些挑戰(zhàn),才能最終達(dá)到3D細(xì)胞培養(yǎng)的塔尖。
     

     

    3D培養(yǎng)的生物材料:

    1.水凝膠

     

    水凝膠是一種有效的3D細(xì)胞培養(yǎng)基質(zhì),它由交聯(lián)的聚合物鏈或復(fù)雜的天然或合成蛋白質(zhì)分子網(wǎng)絡(luò)組成。由于存在大量水,水凝膠的生物物理特性與天然組織的生物物理特性非常相似。作者對3D細(xì)胞培養(yǎng)中常用的不同類型的水凝膠及其性質(zhì)進(jìn)行了總結(jié)。(表2)

    表2  水凝膠的性質(zhì)
    圖片

    用于3D細(xì)胞培養(yǎng)的水凝膠需具有多孔性且孔間相互連通,孔徑應(yīng)與目標(biāo)組織的細(xì)胞大小匹配。此外,在物理性質(zhì)上,由于來自不同組織類型的細(xì)胞需要生長基質(zhì)的不同機(jī)械性能,其彈性模量應(yīng)與目標(biāo)組織相匹配。水凝膠還應(yīng)具有生物相容性和可降解性,可為細(xì)胞和促進(jìn)細(xì)胞分化的官能團(tuán)提供附著位點。同時,它在保持液態(tài)的同時需具有可成形性,在物理或化學(xué)交聯(lián)后能保持其形狀,為細(xì)胞提供穩(wěn)定微環(huán)境。(圖2)

    圖片
    圖2 3D細(xì)胞培養(yǎng)所需要的水凝膠的性質(zhì)
     

     

    2. 脫細(xì)胞基質(zhì)

     

    通過脫細(xì)胞技術(shù)處理不同類型的組織和器官,可以獲得脫細(xì)胞的支架。此種支架不含細(xì)胞和遺傳物質(zhì),但可以保留復(fù)雜的超微結(jié)構(gòu)并模仿靶組織的自然生理解剖結(jié)構(gòu),促進(jìn)定植的干細(xì)胞分化為目標(biāo)組織。但是,殘留的免疫原性物質(zhì)和較低的機(jī)械強(qiáng)度阻礙了其在體內(nèi)的應(yīng)用。

     

    3. 其他細(xì)胞支持材料

     

    聚合物、金屬、陶瓷生物活性玻璃和碳纖維、納米管可制成各種形式的3D細(xì)胞培養(yǎng)支架,并與細(xì)胞包封材料組合使用。將纖維或顆粒添加到水凝膠中可以增加其強(qiáng)度,并充當(dāng)細(xì)胞粘附的結(jié)構(gòu),進(jìn)一步改善水凝膠的生物學(xué)特性。

    接下來,作者以本課題組的科研工作為例,概述了典型的仿生ECM制造。

    (1)澆鑄法:預(yù)先準(zhǔn)備具有特定形狀的模具,將與細(xì)胞混合的水凝膠倒入后通過光、物理、化學(xué)等方法固化,從模具中取出后獲得培養(yǎng)單元。此種方法的缺點是制造大型結(jié)構(gòu)時缺少內(nèi)部通道,成型結(jié)構(gòu)的營養(yǎng)供應(yīng)和代謝廢物不足。而微成型允許生產(chǎn)具有多種復(fù)雜幾何形狀的小型結(jié)構(gòu)。利用高流動性的水凝膠和柔軟的超細(xì)纖維霉菌(SUFM),自動輸送液體和細(xì)胞,并將細(xì)胞均勻地播種到超細(xì)通道中(500 nm至100μm)。

    (2)微球制造:利用表面張力以及水凝膠的粘度,使用懸滴法制造包裹細(xì)胞的微球。在靜電場下,可以制造微米級的球,用于高通量培養(yǎng)和檢測。

    (3)超細(xì)纖維制造:利用靜電紡絲或擠壓3D打印將水凝膠轉(zhuǎn)變?yōu)榧?xì)絲,此種結(jié)構(gòu)可用于神經(jīng)組織。此外,大量的纖維可形成薄膜或涂層,由細(xì)絲的定向結(jié)構(gòu)形成的支架也可以操縱細(xì)胞行為。

    (4)通道制造:可利用同軸3D打印、犧牲模板復(fù)制和DLP打印制造通道結(jié)構(gòu),用于模仿血管和呼吸道。同軸印刷制造的管堆疊形成的3D結(jié)構(gòu)具有一定的直徑且沒有分叉,而DLP或犧牲模板復(fù)制可產(chǎn)生不同直徑的分叉結(jié)構(gòu)和通道。

    (5)復(fù)合材料:結(jié)合不同的制造技術(shù),可以制造具有復(fù)雜結(jié)構(gòu)的培養(yǎng)單元以進(jìn)一步模擬人體器官或組織。

    (6)生物3D打印:利用活細(xì)胞、細(xì)胞外基質(zhì)、生物因子和生物材料作為制造生物產(chǎn)品的原料。當(dāng)前3D生物打印的問題是打印精度和打印效率之間的矛盾:結(jié)構(gòu)越精細(xì),分辨率越高,打印效率就越慢。而裝載在生物墨水中的細(xì)胞難以承受長時間的打印過程。此外,剪切力、不穩(wěn)定的物理和化學(xué)環(huán)境、反復(fù)的交聯(lián)過程都會影響產(chǎn)品的質(zhì)量。

    圖片
    圖3 基于水凝膠材料的仿生ECM的典型制造過程
     

     

    3D細(xì)胞培養(yǎng)的應(yīng)用

     

    3D細(xì)胞培養(yǎng)已成功應(yīng)用于構(gòu)建四種人體基本組織及多種組織構(gòu)成的器官:大量的軟硬支架(生物陶瓷,羥基磷灰石和膠原蛋白)已被用來模仿骨骼組織并應(yīng)用于臨床;微孔藻酸鈉細(xì)絲可用于模擬包裹神經(jīng)細(xì)胞的神經(jīng)纖維的結(jié)構(gòu);使用3D生物打印制作的內(nèi)皮化的心肌在微流灌注生物反應(yīng)器中培養(yǎng)后,心肌細(xì)胞定向正確,能夠自發(fā)并同步收縮;膠原蛋白凝膠和PCL膜已被用作在動物體內(nèi)模型中重建角膜的細(xì)胞載體??墒褂?D細(xì)胞微球來研究腫瘤的發(fā)病機(jī)理和藥物篩選;骨、軟骨組織、心臟組織、皮膚和神經(jīng)組織都已在動物實驗中獲得了再生應(yīng)用;3D細(xì)胞培養(yǎng)也已證明可以顯著維持干細(xì)胞的結(jié)構(gòu)和功能。

    圖片
    圖4 3D細(xì)胞培養(yǎng)在不同組織培養(yǎng)中的應(yīng)用

     

    3D細(xì)胞培養(yǎng)的困難與挑戰(zhàn)

     

    (1)營養(yǎng)供應(yīng)系統(tǒng):
    在2D細(xì)胞培養(yǎng)中,定期更換培養(yǎng)基是2D細(xì)胞培養(yǎng)中用于營養(yǎng)供應(yīng)和廢物代謝的方法。3D細(xì)胞培養(yǎng)的細(xì)胞密度和營養(yǎng)需求遠(yuǎn)高于2D細(xì)胞培養(yǎng),且培養(yǎng)單元內(nèi)的細(xì)胞不與培養(yǎng)基直接接觸,僅通過擴(kuò)散無法維持大量的物質(zhì)代謝??刹捎霉嘧⑾到y(tǒng)或內(nèi)部通道的制造來構(gòu)建有效養(yǎng)分供應(yīng)系統(tǒng)。

    灌注系統(tǒng)中,培養(yǎng)室與無驅(qū)灌注或微泵灌注裝置相連,培養(yǎng)室的另一端與廢液接收系統(tǒng)相連,以排出廢培養(yǎng)液。然而,灌注系統(tǒng)仍存在培養(yǎng)系統(tǒng)內(nèi)存在靜水壓力和易發(fā)液體泄漏的問題。

    利用同軸3D打印技術(shù),在培養(yǎng)單元內(nèi)部建立管道系統(tǒng)以模擬人體的血液循環(huán)系統(tǒng)。這種方法從內(nèi)部結(jié)構(gòu)上改善了代謝物質(zhì)的交換效率。此類管道被埋在培養(yǎng)單元中,并連接到灌注設(shè)備,以將營養(yǎng)物輸送到培養(yǎng)單元中。
     
    (2)檢測系統(tǒng)
    2D細(xì)胞培養(yǎng)時,細(xì)胞粘附在培養(yǎng)板上,可在顯微鏡下直接觀察,細(xì)胞染色和細(xì)胞內(nèi)外物質(zhì)提取過程中可直接用試劑代替培養(yǎng)基,操作過程方便。在3D細(xì)胞培養(yǎng)中,雖可使用共聚焦顯微鏡進(jìn)行小樣品的檢測,但由于共聚焦顯微鏡視野和z軸掃描高度(200μm)的限制,培養(yǎng)過程中無法直接觀察到大體積的培養(yǎng)單位。因此,對于大型培養(yǎng)單位,科學(xué)家需要進(jìn)行預(yù)處理,以細(xì)胞或組織的形式對其進(jìn)行檢測。將水凝膠用化學(xué)試劑分解后,從中提取細(xì)胞或蛋白質(zhì),隨后用于ELISA、流式細(xì)胞儀、PCR、免疫印跡和其他分子生物學(xué)測試。

    (3)標(biāo)準(zhǔn)化
    在實驗研究中,隨機(jī)對照實驗是常用的統(tǒng)計分析方法。因此,大量穩(wěn)定且可重復(fù)的樣本是確保研究結(jié)果可信度的基礎(chǔ)。除了樣品的標(biāo)準(zhǔn)化生產(chǎn)之外,培養(yǎng)條件的一致性也是干擾獲得的研究結(jié)果的主要因素。2D細(xì)胞培養(yǎng)技術(shù)使用常見的培養(yǎng)裝置和設(shè)備系統(tǒng)。標(biāo)準(zhǔn)化的設(shè)備和操作程序使不同研究人員生成的數(shù)據(jù)具有可比性,而不同實驗室建立的3D細(xì)胞培養(yǎng)系統(tǒng)的培養(yǎng)設(shè)備和樣品不相似,實驗數(shù)據(jù)難以對比。因此,建立模塊化培養(yǎng)系統(tǒng),簡化培養(yǎng)操作并降低培養(yǎng)成本也是實現(xiàn)3D細(xì)胞培養(yǎng)所需要解決的問題。

    (4)結(jié)構(gòu)可控的類器官
    近年來在腸和腦組織的3D細(xì)胞培養(yǎng)領(lǐng)域中,類器官已迅速發(fā)展。3D細(xì)胞培養(yǎng)的核心問題,即材料的生物學(xué)特性與成型特性之間的矛盾,在類器官的研究中變得越來越重要。細(xì)胞以3D方式生長時,需要通過3D微環(huán)境傳遞的力進(jìn)行動態(tài)調(diào)節(jié)。軟培養(yǎng)基質(zhì)可以傳遞這種力,但卻難以維持精細(xì)的結(jié)構(gòu),更難以精確控制培養(yǎng)基質(zhì)中的多個細(xì)胞或細(xì)胞分布。未來的研究重點應(yīng)放在通過物理調(diào)節(jié)來構(gòu)造器官結(jié)構(gòu)并將其與化學(xué)調(diào)節(jié)結(jié)合,以更好地誘導(dǎo)所產(chǎn)生的類器官的功能性的技術(shù)上。

    隨著生命科學(xué)領(lǐng)域的新發(fā)展,對3D細(xì)胞培養(yǎng)技術(shù)的需求正在急劇增加。將細(xì)胞封裝在水凝膠中建立3D細(xì)胞培養(yǎng)系統(tǒng)的優(yōu)勢明顯,未來,3D細(xì)胞培養(yǎng)將逐步取代2D細(xì)胞培養(yǎng),更好的反映細(xì)胞在體內(nèi)的生長狀態(tài)。3D細(xì)胞培養(yǎng)技術(shù)的廣泛應(yīng)用需要多學(xué)科技術(shù)之間的良好協(xié)調(diào)。首先是材料科學(xué),其中高質(zhì)量水凝膠培養(yǎng)基質(zhì)的開發(fā)是3D細(xì)胞培養(yǎng)技術(shù)發(fā)展的基礎(chǔ)。其次,結(jié)合材料科學(xué)和生物制造技術(shù)的體內(nèi)組織和器官的模擬為實現(xiàn)3D細(xì)胞培養(yǎng)提供了可能性。最后,微流體技術(shù)的發(fā)展可以整合培養(yǎng)和檢測功能,是實現(xiàn)片上芯片器官的重要手段。

     

     

    以上就是本期的內(nèi)容,更多資訊,歡迎點擊安培生物網(wǎng)站鏈接了解更多技術(shù)與產(chǎn)品資訊


    深圳市安培生物科技有限公司是美國Biozellen公司的中國代理商。Biozellen®3D培養(yǎng)基質(zhì)膠經(jīng)驗證可*替代BD/康寧的基質(zhì)膠,來源為植物源且氨基酸序列人源化,無人畜共患病的病原菌或毒素污染,提供完整售后服務(wù)和技術(shù)支持。


    安培生物科技有限公司介紹:

    安培生物堅持為生命科學(xué)研究、活體動物轉(zhuǎn)染、大規(guī)模生物生產(chǎn)、基因和細(xì)胞治療領(lǐng)域客戶,提供*細(xì)胞體內(nèi)可代謝的核酸轉(zhuǎn)染試劑;inviCELL™Platelet lysate無動物血清產(chǎn)品旨在支持廣泛的細(xì)胞擴(kuò)增和生產(chǎn),包括培養(yǎng)間充質(zhì)干細(xì)胞和多種免疫細(xì)胞系等,為制藥公司或者生物技術(shù)公司提供無血清細(xì)胞培養(yǎng)規(guī)模生產(chǎn)服務(wù);提供以植物生物為平臺基因序列全人源化、*的細(xì)胞培養(yǎng)可分解3D基質(zhì)膠產(chǎn)品;提供內(nèi)毒素≦ 1.0 EU/mL、對細(xì)胞無毒性影響、高純度的一型膠原蛋白產(chǎn)品。安培生物專注為生物醫(yī)藥領(lǐng)域提供優(yōu)質(zhì)的產(chǎn)品和技術(shù)服務(wù),努力發(fā)展為基因治療、細(xì)胞治療的生物科技企業(yè)。


產(chǎn)品中心 Products
栾城县| 崇文区| 南平市| 仙游县| 故城县| 太白县| 凤翔县| 肥西县| 青川县| 姚安县| 龙江县| 项城市| 偃师市| 绥中县| 阿拉善右旗| 安顺市| 绵竹市| 丰都县| 永新县| 昌黎县| 庄浪县| 武胜县| 西吉县| 全南县| 汉阴县| 白山市| 秦安县| 招远市| 定兴县| 平舆县| 芒康县| 高碑店市| 民丰县| 寻甸| 霍城县| 布尔津县| 三原县| 团风县| 赤城县| 岚皋县| 集安市|